27.1 Draw $\vec{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and all vectors orthogonal to it. Call this set A.
27.2 If $\vec{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and \vec{x} is orthogonal to \vec{u}, what is $\vec{x} \cdot \vec{u}$?
27.3 Expand the dot product $\vec{u} \cdot \vec{x}$ to get an equation for A.
27.4 If possible, express A as a span.

Normal Vector

A normal vector to a line (or plane or hyperplane) is a non-zero vector that is orthogonal to all direction vectors for the line (or plane or hyperplane).

28
Let $\vec{d}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{p}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$, and define the lines

$$
\ell_{1}=\operatorname{span}\{\vec{d}\} \quad \text { and } \quad \ell_{2}=\operatorname{span}\{\vec{d}\}+\{\vec{p}\}
$$

28.1 Find a vector \vec{n} that is a normal vector for both ℓ_{1} and ℓ_{2}.
28.2 Let $\vec{v} \in \ell_{1}$ and $\vec{u} \in \ell_{2}$. What is $\vec{n} \cdot \vec{v}$? What about $\vec{n} \cdot(\vec{u}-\vec{p})$? Explain using a picture.
28.3 A line is expressed in normal form if it is represented by an equation of the form $\vec{n} \cdot(\vec{x}-\vec{q})=0$ for some \vec{n} and \vec{q}. Express ℓ_{1} and ℓ_{2} in normal form.
28.4 Some textbooks would claim that ℓ_{2} could be expressed in normal form as $\left[\begin{array}{r}2 \\ -1\end{array}\right] \cdot \vec{x}=3$. How does this relate to the $\vec{n} \cdot(\vec{x}-\vec{p})=0$ normal form? Where does the 3 come from?

Let $\vec{n}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
29.1 Use set-builder notation to write down the set, X, of all vectors orthogonal to \vec{n}. Describe this set geometrically.
29.2 Describe X using an equation.
29.3 Describe X as a span.

